

[Material Data Sheet]

316L v.2 Stainless Steel PureSinter Furnace

COMPOSITION %	
С	0.03 (max)
Cr	16.0 - 18.0
Ni	10.0 - 14.0
Мо	2.0 - 3.0
Mn	2.0 (max)
Si	1.0 (max)
Fe	Balance

MECHANICAL PROPERTIES IN DESKTOP METAL PURESINTER FURNACE				
	Standard	Studio System™ 2 As-Sintered	MIM - MPIF 35 Min As-Sintered	Wrought For reference
Ultimate tensile strength (MPa)	ASTM E8M	580 ± 5	520	425
Yield strength (MPa)	ASTM E8M	210 ± 12	175	170
Elongation at break (%)	ASTM E8M	72 ± 7	50	40
Young's modulus	ASTM E111	189	190	
Hardness (HRB)	ASTM E18	68 ± 2	67	95 (max)
Un-notched charpy impact strength (J)	MPIF 59	219 ± 10	190	
Density (g/cm³)		7.78 ± 0.04	7.6	

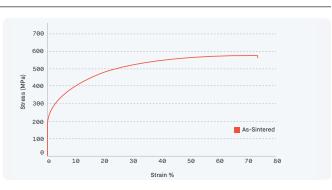
PERFORMANCE		
		Studio System™ 2
	Standard	As-Sintered
Boil test (corrosion)	ASTM F1089	Pass
Copper sulfate test (corrosion)	ASTM F1089	Pass
Sulfuric acid test (g/dm²/day)(corrosion)	MPIF 62	<0.001

OTHER STANDARD DESIGNATIONS

UNS S31603		
EN 1.4404		

1. Prior to corrosion resistance testing, all test samples were cleaned and passivated in accordance with ASTM A967.

2. Listed designations are for reference purposes only. Composition and mechanical properties may vary.


3. Per MPIF Standard 35, Materials Standards for Metal Injection Molded Parts (MPIF 35-MIM, 2018). End-use material performance is impacted (+/-) by certain factors including but not limited to part

geometry and design, application and evaluation conditions, etc.

4. Wrought values based on ASTM A240 standards.

[Material Data Sheet]

316L v.2 Stainless Steel

COMPOSITION %			
Fe	balance		
Ni	10 - 14		
Cr	16 - 18		
Мо	2 - 3		
Mn	2.0 (max)		
Si	1.0 (max)		
С	0.03 (max)		

MECHANICAL PROPERTIES SINTERED IN DESKTOP METAL FURNACE

	Standard	Studio System™ 2 _{As-Sintered}	MIM - MPIF 35 Min As-Sintered	Wrought For reference
Ultimate tensile strength (MPa)	ASTM E8M	533	450	425
Yield strength (MPa)	ASTM E8M	169	140	170
Elongation (%)	ASTM E8M	66	40	40
Hardness (HRB)	ASTM E18	66	67 (typ)	95 (max)
Density (relative)	ASTM B311	97%	95%	100%

PERFORMANCE			OTHER STANDARD DESIGNATIONS
	Standard	Studio System™ 2 As-Sintered	UNS S31603
Boil test (corrosion)	ASTM F1089	Pass	EN 1.4404
Copper sulfate test (corrosion)	ASTM F1089	Pass	

1. Per MPIF Standard 35, Materials Standards for Metal Injection Molded Parts (MPIF 35-MIM, 2018).

2. Wrought values based on ASTM A240 standards.

3. Prior to corrosion resistance testing, all test samples were machined and passivated in accordance with ASTM F1089.

4. Listed designations are for reference purposes only. Composition and mechnical properties may vary.

End-use material performance is impacted (+/-) by certain factors including but not limited to part geometry and design, application and evaluation conditions, etc.

Tensile properties and density data reported are mean values minus 1 sigma.

Due to the material's high elongation, strain values were obtained from crosshead displacement. In conformance with ASTM E8M, total elongation was obtained from scribed marks on the gage length and yield strength was calculated from extensioneter measurements.